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Axisymmetric form of Kármán-Howarth equation
and its limiting forms

M. Ould-Rouissa

Laboratoire de Génie des Procédés, bâtiment Lavoisier, Université de Marne-la-Vallée, 77420 Champs-sur-Marne, France
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Abstract. Kinematics and dynamics of homogeneous axisymmetric turbulence have been derived with
the assumption that the properties of the turbulence are invariant with respect to rotation about a pre-
ferred direction λ. In particular, the “axisymmetric” equivalent of Karman-Howarth “isotropic” equation
is derived using Lindborg’s representation of the two-point correlation tensors of homogeneous axisym-
metric turbulence. When the more constraining assumption of isotropy is made, this equation reduces to
the well-known Karman-Howarth equation. There are two interesting limiting forms of the axisymmetric
Karman-Howarth equation: the axisymmetric form of the energy balance equation and the axisymmetric
form of the vorticity balance equation.

PACS. 47.27.Ak Fundamentals – 47.10.+g General theory

1 Introduction

In the case of homogeneous turbulence when no symmetry
conditions at all are imposed, the statistics of a turbulent
field are somewhat difficult to study. Indeed, the most
general expression of the second-order tensor for example
is given by (Batchelor [1])

Bij(r) = 〈ui(x)uj(x + r)〉
= A δij + 93 terms like B rirj)

+ (6 terms like C rirj)
+ (3 terms like D εijkrk)
+ (12 terms like E εiklrkλlrj)
+ (6 terms like F εiklrkλlµj)

where λ and µ are two extra vector arguments, r = |r|
and the scalar coefficients A, B, ... are functions of r2,
riλi and riµi. Angular brackets denotes averaging.

Tensors of higher order are more complicated. Because
of this, it is usual and practical as well as gain in sim-
plicity, to consider fields of turbulence which satisfy cer-
tain symmetry conditions (in statistical sense). For exam-
ple, the case of turbulence which has rotational symmetry
about a given line or which have axial symmetry. These
cases occurs frequently in practice. Besides, it frequently
happens that the above general expressions are simplified
by the existence of symmetry in the suffixes (for instance
〈ui(x)uj(x)uk(x + r)〉 is unchanged by interchange of the
suffixes i and j). It is also possible to simplify these ex-
pressions if the field is solenoidal: the vanishing divergence
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gives some of the scalar functions occurring in the expres-
sion of Bij in term of the others.

The simplest example of turbulence which has been
widely considered is the important special case of isotropic
turbulence. This case of homogeneous and isotropic tur-
bulence is very attractive, especially for a theoretician.
It was, therefore, natural to begin with this case and
try to use it to exhibit some of the characteristic prop-
erties of turbulent fields. However, one must remember
that the concept of isotropic turbulence is a mathematical
idealization which, at best, is convenient only for approxi-
mate description of certain special types of turbulent flow.
Isotropic conditions are satisfactorily fulfilled for a certain
class of turbulent flows produced in laboratory wind tun-
nels (Monin and Yaglom (M-Y)[2]). A fundamental result
for the basic dynamic equations for the correlation func-
tions of isotropic turbulence is Karman and Howarth equa-
tion (K-H, 1938) which connect the longitudinal scalar
function of second-order, BLL(r, t)=〈uL(x, t)uL(x + r, t)〉,
to the third-order one, BLL,L(r, t)= 〈u2

L(x, t)uL(x + r, t)〉.
Many experimental work in literature ([2], p. 123) gave
support to this theoretical result.

Theoretical and numerical investigations have also
been devoted to K-H equation for various applications. For
example, Henriksen and Lachieze [3] introduced a new ap-
proach to the calculation of the galactic mass multiplicity
function based on the probability of the correlated veloc-
ity structures existing on a given spatial scale. The predic-
tions are deduced directly from the cosmic von Karman-
Howarth equation and are in good agreement with existing
data.

Departing from the equations of motion of a dusty
incompressible gas, Saha [4] obtained an equation which
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resembles to the K-H equation and showed that the crite-
ria for K-H equation are also the criteria for this equation.

Recently, Chkhetiani [5] derived K-H type equations
describing the evolution of the mixed correlation tensor
of the velocity and the vorticity in homogeneous helical
turbulence.

More recently, Gotoh [6] examined theoretically and
by high resolution direct numerical simulations (DNS) the
energy spectrum in the inertial and dissipation ranges in
2-D steady turbulence.

Politano and Pouquet [7] derived a von Karman-
Howarth equation for magnetohydrodynamics and its con-
sequences on the third-order longitudinal structure and
correlation functions.

A type of turbulence which is next to local isotropy in
order of simplicity, but which corresponds more closely to
turbulent flows encountered in practice, is axisymmetric
turbulence. The study of axisymmetric turbulence is par-
ticularly interesting since it is the simplest form of tur-
bulence in which effects of anisotropy distribution among
different scales and return to isotropy can be studied. It
would seem profitable to examine the form that this equa-
tion (K-H) would take when only local axisymmetry, an
assumption which is intermediate in severity between local
homogeneity and local isotropy is adopted.

It seems appropriate to briefly review the progress
that has been made on the theory of axisymmetric turbu-
lence since Batchelor [8] first considered the second-order
two-point correlation tensor using the invariant theory of
Robertson [9]. This tensor can be expressed in terms of a
unit vector λ in the direction of symmetry

Bij(r) = 〈ui(x)uj(x + r)〉
= rirjA+ δijB + λiλjC + (λirj + λjri)D (1)

and in terms of four scalar functions (A, B, C, D) of
r = |r| and µ = r · λ/r. Continuity gives two equations
relating these four scalar functions. Since the tensor Bij
could not be expressed in terms of less than four scalar
functions, properties analogous to those for isotropic tur-
bulence could not be derived. Chandrasekhar [10] ex-
pressed the second-order tensor Bij explicitly in terms of
only two scalar functions (Q1 and Q2). He introduced a
new aspect of the theory which Batchelor did not con-
sider: the representation of the axisymmetric solenoidal
tensor as the curl of a general axisymmetric skew tensor.
Chandrasekhar extended his method to the third-order
tensor (two-point triple correlations). This tensor depends
on six scalar independent functions. In this manner, a new
“von Kármán-Howarth equation” was established for ax-
isymmetric turbulence. However, Chandrasekhar’s repre-
sentation is complicated and not easy to be tested exper-
imentally.

An interesting theoretical representation of axisym-
metric turbulence was recently presented by Lindborg [11].
Axisymmetric tensors are expressed in terms of scalar
functions corresponding to correlations which can be
measured. This was not possible for the representations
of Batchelor and Chandrasekhar. Unlike Batchelor and

Chandrasekhar, Lindborg included rotational states (re-
flectional symmetry is imposed only in planes normal to
the axis of symmetry; no symmetry is required for planes
through the axis of symmetry). Skew tensors were intro-
duced to describe mean flow rotation; they are zero when
there is no rotation about the axis of symmetry. Lindborg
obtained expressions for second and third-order axisym-
metric two-point correlation tensors in terms of measur-
able scalar functions.

The approach used in the present paper follows that
of Lindborg [11]. In particular, the “axisymmetric” equiv-
alent of Karman-Howarth “isotropic” equation is derived
in Section 5. The axisymmetric forms of the second and
third-order tensors for the velocity correlations are given
in Sections 3 and 4 respectively. There are two interesting
limiting forms of the axisymmetric K-H equation.

2 Karman-Howarth equation

Departing from the Navier-Stokes equations, Monin has
considered the derivation of the dynamic equation for the
tensor Bij(r, t). This basic equation relates the second-
order velocity correlation tensor Bij(r, t) to the third-
order velocity correlation tensor Bij,k(r, t) for homoge-
neous turbulence. To find this equation, one can write
Navier-Stokes equations for the ith velocity component
(u0i) at point x0, and the jth velocity component (uj) at
the point x = x0 + r, and multiply the first of them by uj
and the second by u0i. Then, add both equations together
and take an average

∂Bij(r)
∂t

= Tij(r) +Πij(r)− 2εij(r), (2)

and

Bij(r) = 〈u0iuj〉,
Bij,k(r) = 〈u0iu0juk〉

Tij(r) =
∂

∂rk
(Bik,j(r)−Bi,jk(r))

Πij(r) =
1
ρ

(
∂〈p0uj〉
∂ri

− ∂〈pu0i〉
∂rj

)
εij(r) = −ν ∂

2

∂r2
k

Bij(r).

Note that ui (or p) depends only on x and u0i (or p0)
depends only on x0. In this paper, repeated indices im-
plies summation and no summation is implied by repeated
Greek indices.

In equation (2), Tij is the transfer tensor; its role is
essentially to transfer energy from large to small scales.
Πij is the two-point pressure strain tensor which vanishes
for i = j; this correlation contributes nothing to the decay
of kinetic energy, which is affected solely by viscosity, but
is responsible for a transfer of energy between the longi-
tudinal and transverse velocity components. And ε is the
two-point dissipation tensor.
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In the case of isotropic turbulence, the non-vanishing
scalar functions of second and third-order (BNN, BLN,N

and BNN,L) can be expressed in terms of the two longitu-
dinal scalar functions BLL(r, t) and BLL,L(r, t). Therefore,
Monin and Yaglom obtained an equation which plays a ba-
sic part in all subsequent studies in the theory of isotropic
turbulence:

∂

∂t
BLL(r, t) =

(
∂

∂r
+

4
r

)(
BLL,L + 2ν

∂

∂r
BLL

)
. (3)

This equation was first derived by Karman and
Howarth (1938) as pointed out Monin and Yaglom [2].
The left-hand-side of equation (3) is the temporal deriva-
tive of the two point correlation. The first term in the
right-hand-side is the spatial derivative of the third-order
correlation. It results from the non-linearity of the Navier-
Stokes equations. The last term represents the effects of
the molecular viscosity. This single scalar equation, for
isotropic turbulence, yields several auxiliary equations of
physical significance. Expanding the scalar functions in
powers of r2, and equating coefficients of similar powers
of r2, there is obtained, in turn, equations for the time rate
of change of the mean square velocity fluctuation (the en-
ergy balance equation), of the mean square vorticity (the
vorticity balance equation), etc.

In Section 5, we will derive the axisymmetric form of
Karman-Howarth equation (K-H equation) and its limit-
ing forms. Let us first consider equation (2). After con-
tracting indices (i = j), it reduces to

∂

∂t
Bii(r, t) =

∂

∂rk
[Bik,i(r, t)−Bi,ik(r, t)]

+ 2ν
∂2

∂r2
k

Bii(r, t), (4)

where the derivatives of pressure-velocity correlations,
∂(Bpi−Bip)/∂ri, vanish because of incompressibility (con-
tinuity). The case i = j is very interesting because the
difficulties introduced by the pressure-velocity correlations
disappear. Homogeneity means that Bij,k(r, t) is indepen-
dent of position x and also implies:

Bi,ik(r, t) = Bik,i(−r, t). (5)

Equation (4) is valid for homogeneous turbulence. When
local isotropy is assumed, one can obtain K-H equation (3)
from equation (4). By substituting the axisymmetric forms
of Bii and Bik,i in equation (4), we will derive the axisym-
metric form of K-H equation and their limiting forms. One
of them is the energy balance equation for axisymmetric
turbulence; the other must be the axisymmetric form of
the vorticity balance equation.

Note that in the present work, we have assumed in
a first stage, that we are concerned with an incompress-
ible fluid whose motion can be described by the Navier-
Stokes equations without external forces, equation (2) (see
M-Y [2]). Usually, inhomogeneities (mean gradients or
shears) are needed to produce turbulence. In this case,
we have to consider the effects of the mean flow gradient.

Thus the dynamical equation for the second-order tensor
Bij can be written (see Lindborg [11] and Hinze [12])

∂Bij(r)
∂t

= −∂Uk
∂xs

Aksij(r) + Tij(r) +Πij(r) − 2εij(r),

where ∂Uk/∂xs is the mean flow gradient tensor, and

Aksij(r) = δkiBsj(r) + δkjBsi(−r) + rs
∂

∂rk
Bij(r).

Frisch [13] added a forcing term f(r, t) in the Navier-
Stokes equations which is active only at large scales. The
force f is needed to replenish the energy dissipated by
viscosity.

However, if there is a production of turbulence by mean
gradients in some regions of some flows, this energy can
also be transferred by turbulent diffusion to other regions
where the gradients vanish. This is the case of flows which
present a symmetry in the preferred direction (for exam-
ple: a jet, a chanal, a wake, ...). Note that the inhomo-
geneities may be weak enough to be partially ignored at
small scales and far from boundaries, Frisch [13]. For these
cases, our derivation is valid.

3 Second-order tensor Bij

A system of orthogonal unit vectors (λ, e1, e2) is chosen
to represent axisymmetric tensors for velocity structure
functions (see Fig. 1, which is similar to Fig. 1 of Lind-
borg [11]). In this system, the second-order axisymmetric
tensor depends only on four independent scalar functions.
For axisymmetric turbulence without mean rotation (only
this case is considered here for simplicity), an important
property of the second-order correlation function tensor is
the symmetry index : Bij(−r) = Bij(r) which allows the
five scalar functions to be reduced to four, viz.

Bij(r) = λiλjB1 + e2ie2jB2 + e1ie1jB3

+ (λie2j + λje2i)B4. (6)

B1, B2, B3 and B4, which depend on ρ = |r × λ| and
z = r · λ, can all be measured since

B1 = 〈up1u01〉 (7a)
B2 = 〈up2u02〉 (7b)
B3 = 〈up3u03〉 (7c)
B4 = 〈u01up2〉. (7d)

Also, B1, B2, B3 are even in z while B4 is odd with respect
to z. (As can be seen in Fig. 1, the image of point P with
respect to a plane perpendicular to vector λ, is such that
u′1 = −u1, u′2 = u2, u′3 = u3).

As noted by Lindborg, the separation vector r and
all the velocity components in a plane normal to λ can
be reflected with respect to this plane without affecting
Dij(r). Reflectional symmetry about a plane containing
the axis of symmetry, for example the (λ, r) plane, implies



342 The European Physical Journal B

Fig. 1. Cartesian co-ordinate system showing velocity
components.

that the skew tensors are zero; this is true when there is
no rotation about the axis of symmetry.

Relations between B1, B2, B3, B4 follow from conti-
nuity, i.e.

∂

∂rj
Bij(r) =

∂

∂ri
Bij(r) = 0. (8)

The procedure is similar to that established by Lindborg
and yields equivalent results

∂

∂ρ
(ρB4) + ρ

∂

∂z
(B1) = 0 (9a)

B3 =
∂

∂ρ
(ρB2) + ρ

∂

∂z
B4 (9b)

where we have used the following derivatives with respect
to rj

∂

∂rj
e1i = −1

ρ
e1je2i ,

∂

∂rj
e2i =

1
ρ
e1je1i (10a)

λj
∂

∂rj
=

∂

∂z
, e2j

∂

∂rj
=

∂

∂ρ
,

e1j
∂

∂rj
= 0. (10b)

For isotropic turbulence, λ can lie in any direction. Before
checking that these results are compatible with the well-
known isotropic relation between BLL(r) and BNN(r), it
should be noted that derivatives with respect to z or ρ are
linked to those with respect to r and/or µ (µ = r · λ/r)
as follows

∂

∂z
= λj

∂

∂rj
= rµDr +Dµ (11a)

∂

∂ρ
= e2j

∂

∂rj
= r
√

1− µ2Dr (11b)

with

∂

∂rj
= rjDr + λjDµ

Dr =
1
r

∂

∂r
− µ

r2

∂

∂µ

Dµ =
1
r

∂

∂µ


.

In order to relate B1, B2, B3, B4 to BLL and BNN, the
second-order isotropic tensor

Bij(r) = (BLL −BNN)
rirj
r2

+BNNδij (12)

is projected onto the tensors λiλj , e1ie1j , e2ie2j and λie2j

corresponding to B1, B2, B3 and B4 respectively. Since it
is also known that

e1ie1j = δij − λiλj − e2ie2j (13a)

e2i =
1

r(1− µ2)1/2
(ri − rµλi), (13b)

the following relations can be derived

B1 =
z2

r2
BLL +

ρ2

r2
BNN (14a)

B2 =
ρ2

r2
BLL +

z2

r2
BNN (14b)

B3 = BNN (14c)

B4 =
ρz

r2
(BLL −BNN). (14d)

After substituting (14a-d) into equations (9a, b) and tak-
ing into account the equivalences (11a, b), the isotropic
result

BNN(r) =
(

1 +
r

2
∂

∂r

)
BLL(r) (15)

is obtained. Note that when r is parallel to λ, ρ = 0,
B2 = B3 and B4 = 0; this leads to

Bij(r) = λiλjB1 +B2(δij − λiλj) (16)

which is similar in form to (12). However, whereasBLL and
BNN are related through (15), B1 and B2 are independent
scalar functions.

4 Third-order tensor Bij;k

In this section, we develop the two-point representation
for the third-order tensors and establish the properties
of the corresponding scalar functions that are needed for
reduction of the general formulae in Sections 5. The third-
order correlation tensor, Bij,k(r, t), is symmetric in the
first two indices (i and j) and can be represented, in the
case of axisymmetric turbulence without mean rotation
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about the axis of symmetry:

Bij,k(r) = λiλjλkM1 + λke2ie2jM2

+ λke1ie1jM3 + λiλje2kM4 + e2ie2je2kM5

+ e1ie1je2kM6 + (λie2j + λje2i)λkM7

+ (λie2j+λje2i)e2kM8+(λie1j+λje1i)e1kM9

+ (e2ie1j + e2je1i)e1kM10 (17)

where M1, M2 · · ·M10 are scalar functions of ρ and z. M4,
M5, M6, M7 and M10 are even in z, while the rest of
scalar functions are odd in z. These functions are defined
as follow

M1 = 〈u2
01up1〉, M2 =〈u2

02up1〉,
M3 = 〈u2

03up1〉, M4 =〈u2
01up2〉,

M5 = 〈u2
02up2〉, M6 =〈u2

03up2〉,
M7 = 〈u01u02up1〉, M8 =〈u01u02up2〉,
M9 = 〈u01u03up3〉, M10=〈u03u02up3〉. (18)

Moreover, Bij,k is solenoidal in the last index

∂

∂rk
Bij,k = 0. (19)

Using the general expression of Bij,k, equation (17), and
relations (11a, b), the continuity condition, (Eq. (19)),
leads to relations between the ten scalar functions

∂

∂ρ
(ρM4) + ρ

∂

∂z
(M1) = 0 (20a)

M10 =
1
2

(
∂

∂ρ
(ρM5) + ρ

∂

∂z
M2

)
(20b)

M10 = −1
2

(
∂

∂ρ
(ρM6) + ρ

∂

∂z
M3

)
(20c)

M9 =
∂

∂ρ
(ρM8) + ρ

∂

∂z
M7. (20d)

In order to find the relations between the axisymmet-
ric scalar functions M1, M2, ...., M10 and the isotropic
third-order scalar functions BLL,L, BLN,N and BNN,L, let
us consider the third-order isotropic tensor which can be
expressed in terms of the three non-vanishing isotropic
scalar functions

Bij,k(r) = (BLL,L − 2BLN,N −BNN,L)
rirjrk
r3

+BLN,N

(ri
r
δjk +

rj
r
δik

)
+BNN,L

rk
r
δij . (21)

The projection of the isotropic tensor Bij,k onto the
λiλjλk, λke2ie2j, λke1ie1j , λiλje1k, e2ie2je2k, e1ie1je2k,
λiλke2k, λie2je2k, λie1je1k and e2ie1je1k which corre-
sponds to M1, M2, M3, M4, M5, M6, M7, M8, M9 and
M10 respectively, gives the relations between the axisym-

metric functions and the isotropic ones

M1 = (BLL,L − 2BLN,N −BNN,L)
z3

r3

+ 2BLN,N
z

r
+BNN,L

z

r
(22a)

M2 = (BLL,L − 2BLN,N −BNN,L)
zρ2

r3
+BNN,L

z

r
(22b)

M3 = BNN,L
z

r
(22c)

M4 = (BLL,L − 2BLN,N −BNN,L)
ρz2

r3
+BNN,L

ρ

r
(22d)

M5 = (BLL,L − 2BLN,N −BNN,L)
ρ3

r3

+ 2BLN,N
ρ

r
+BNN,L

ρ

r
(22e)

M6 = BNN,L
ρ

r
(22f)

M7 = (BLL,L − 2BLN,N −BNN,L)
ρz2

r3
+BLN,L

ρ

r
(22g)

M8 = (BLL,L − 2BLN,N −BNN,L)
zρ2

r3
+BLN,L

z

r
(22h)

M9 = BLN,L
z

r
(22i)

M10 = BLN,L
ρ

r
· (22j)

In the special case of r parallel to λ, M2 = M3, M8 = M9

and M4 = M5 = M6 = M7 = M10 = 0; this leads to

Bij,k(r) = (M1 − 2M8 −M2)λiλjλk
+M8 (λiδjk + λjδik) +M2λkδij , (23)

which is similar to the isotropic expression of Bij,k,
(Eq. (21)). However, the scalar isotropic functions BLL,L,
BLN,N and BNN,L are related whereas the remaining scalar
functions, M1, M2 and M8, are independent.

After substituting equations (22a-j) into equa-
tions (20a-d), we obtain the well-known relations between
the isotropic scalar functions of the tensor Bij,k

BNN,L = −1
2
BLL,L (24)

BLN,N =
1
2

(
1 +

r

2
∂

∂r

)
BLL,L. (25)

5 Axisymmetric form of “Karman-Howarth”
equation

The purpose of the present section is, first, to establish
the axisymmetric form of the dynamic equation. Then, we
derive the corresponding limiting form when axisymme-
try turns into isotropy, on the one hand, and the limiting
forms when the separation r goes to zero, on the other. To
derive the axisymmetric form of Karman-Howarth equa-
tion, we consider equation (4) which was established for
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homogeneous turbulence. When we substitute the axisy-
metric expressions of the tensors Bii and Biα,i into this
equation, we obtain

∂

∂t

3∑
i=1

Bi =
∂

∂z

∑
i=1,8,9

(Mi −M∗i )

+
(

1
ρ

+
∂

∂ρ

) ∑
i=5,7,10

(Mi −M∗i )

+ 2ν
(
∂2

∂z2
+

∂2

∂ρ2
+

1
ρ

∂

∂ρ

) 3∑
i=1

Bi (26)

where ∑
i=1,8,9

Mi = M1 +M8 +M9.

The M∗’s are the scalar functions relative to the tensor
Bi,ik(r, t)

M∗1 = 〈u2
p1u01〉, M∗5 =〈u2

p2u02〉,
M∗7 = 〈u01up1up2〉, M∗8 =〈u02up1up2〉,
M∗9 = 〈u03up1up3〉, M∗10=〈u03up2up3〉.

Note that it is also possible to work with the tensor
Bik,i(−r, t) instead of Bi,ik(r, t) as for homogeneous tur-
bulence Bik,i(−r, t) = Bi,ik(r, t)

Spectral form of equation (26):

The spectral form of K-H equation has a simple physical
interpretation which is important for the understanding
of the mechanism of turbulent mixing. It is more con-
venient to derive this spectral form from equation (2) (or
Eq. (4) with i 6= j) which was used to derive equation (26).
For any homogeneous turbulence, the Fourier-transform of
each term in equation (2) leads to

∂B̂ij(k)
∂t

= T̂ij(k) + Π̂ij(k) − 2νk2B̂ij(k), (27)

where T̂ij(k) is the Fourier transform (F-T) of the trans-
fer tensor Tij(r), Π̂ij(k) is the F-T of the pressure-strain
tensor Πij(r) and νk2B̂ij(k) the F-T of the viscous dissi-
pation εij(r). Substituting i = j in the previous equation,
one can obtain

∂B̂ii(k)
∂t

= T̂ii(k) − 2νk2B̂ii(k). (28)

The left-hand-side of this equation describes the time
variation of the turbulent energy with the wave number
k. The corresponding components of T̂ii describes the
non linear transfer of energy within each component.
This transfer is just an energy redistribution among the
individual spectral components, without any change in
the energy of the turbulent motion which is conserved,
Lindborg [11] and M-Y [2]. The viscous energy dissipation
is described by the second-term on the right-hand-side. It
causes a decrease in the kinetic energy. For small values
of k, this energy decrease is much more slower than the
energy decrease for high values of k.

5.1 Isotropy

The axisymmetric result (Eq. (26)) should reduce to the
isotropic form when λ is allowed to assume any direction.
In this case, we can put the expressions of the M -functions
given in (22a-j) and the expressions of the B-functions
given in (14a-d) as well as relations (between the scalar
functions BLL,L, BLN,N and BNN,L) (24) and (25) into
equation (26). Note that, for isotropic turbulence, we have
M∗i = −Mi, and Bi,ik(r, t) = −Bik,i(r, t). Therefore, us-
ing (11 a-c), we find(

3 + r
∂

∂r

){
∂BLL

∂t
−
(

4
r

+
∂

∂r

)
(
BLL,L + 2ν

∂BLL
∂r

)}
= 0. (29)

Using Monin-Yaglom’s argument (p. 122), the only solu-
tion of equation (29) which does not have a singularity at
r = 0 is given by K-H equation (3).

Finally, it is worth noting that, in the particular ax-
isymmetric case when r is parallel to λ, equation (26) can
be somewhat simplified. As mentioned before, B2 = B3,
M8 = M9 and M5 = M7 = M10 = 0. However, we have
to be careful at this stage: although M5, M7 and M10 are
zero, their derivative with respect to ρ and their division
by ρ are not equal to zero.

5.2 Limiting form when r→ 0

5.2.1 Second-order functions

For small values of r, the form of the second-order corre-
lation functions, B1, B2, B3 and B4, can be deduced from
the Taylor expansions as far as the fourth power of r. For
α = 1, 2 or 3, the general form of these expansions is

Bα = 〈u2
α〉+

ρ2

2
〈uα

∂2uα
∂ρ2
〉+

z2

2
〈uα

∂2uα
∂z2
〉

+
ρ4

24
〈uα

∂4uα
∂ρ4
〉+

z4

24
〈uα

∂4uα
∂z4
〉

+
ρ2z2

4
〈uα

∂4uα
∂ρ2∂z2

〉 (30)

and

B4 = ρz〈u1
∂2u2

∂ρ∂z
〉+

ρ3z

6
〈u1

∂4u2

∂ρ3∂z
〉+

ρz3

6
〈u1

∂4u2

∂ρ∂z3
〉

(31)

or in a simple manner

Bα = B0α + aαρ
2 + bαz

2 + cαρ
4 + dαz

4 + eαρ
2z2 + ...

(32)

and

B4 = a4zρ+ b4zρ
3 + c4z

3ρ+ ... (33)
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The continuity equations (9a, b) allow us to reduce the
number of coefficients in the previous expansions. For the
particular case when r is parallel to λ, we obtain

a4 = −b1, b4 = −1
2
e1, c4 = −2d1,

b2 = b3, d2 = d3, a3 = 3a2 + a4,

c3 = 5c2 + b4, e3 = 3e2 + 3c4. (34)

Similarly, we can write the expansions of the isotropic
functions f and g

f =
BLL(r)
BLL(0)

= 1− r2

2λ2
t

+
α

4!
r4 + ... (35)

g =
BNN(r)
BNN(0)

= 1− r2

λ2
t

+
3α
4!
r4 + ... (36)

where λt is the Taylor microscale and BLL(0) = BNN(0) =
u2, u being the root mean square of any velocity compo-
nent. Now, when axisymmetry turns into isotropy, equa-
tions (14a-d) yields to

a1 = 2a2 = a3 = 2b1 = b2 = b3 = −u
2

λ2
t

c1 = 3c2 = c3 = 3d1 = d2 = d3 =
α

8
u2

6e1 = 6e2 = 4e3 = αu2. (37)

5.2.2 Third-order functions

The behaviour of the third-order correlation functions, for
small separations (r → 0), are given by the following ex-
pansions for i = 1, 2, 3, 8 or 9

Mi =
z3

6
〈u1uα

∂3uα
∂z3
〉+

zρ2

2
〈u1uα

∂3uα
∂ρ2∂z

〉 (38)

where for i = 1, 8 or 9, it corresponds α = 1, 2 or 3
respectively. We can equivalently write Mi in a simple
manner

Mi = αiz
3 + βizρ

2 + ... (39)

Moreover, for i = 4, 5, 6, 7 or 10

Mi =
ρ3

6
〈u2uα

∂3uα
∂ρ3
〉+

ρz2

2
〈u2uα

∂3uα
∂ρ∂z2

〉 (40)

where α = 1, 2 or 3 is relative to i = 5,7 or 10 respectively.
We can also simply write

Mi = γiρ
3 + ζiz

2ρ+ ... (41)

From the continuity equations (20a-d), the coefficients αi,
βi γi and ζi are required to satisfy

β1 = −4γ4, α1 = −2
3
ζ4, α9 = α8,

γ10 = 2γ5 +
1
2
β2 = −2γ6 −

1
2
β3,

ζ10 = ζ5 +
3
2
α2 = −ζ6 −

3
2
α3,

β9 = 3β8 + 2ζ7. (42)

Moreover, in the particular case ρ = 0, we have α2 = α3.
For small values of r, the longitudinal scalar function

BLL,L is

BLL,L(r) = b3r
3 + ... (43)

where

b3 = τu3 =
1
6

[
∂3BLL,L(r)

∂r3

]
r=0

=
1
6
〈
(
∂u1

∂x1

)3

〉. (44)

Finally, for isotropy, combination of equations (24), (25)
and (43) gives the relations between the coefficients in
(22a-j) and the single coefficient b3,

α1 = γ5 = b3, β8 = ζ7 =
1
4
b3,

α9 = α8 = β9 = γ7 = γ10 = ζ10 =
5
4
b3,

β1 = ζ5 = 2b3. (45)

5.3 The zero-order terms of Taylor expansions

There are two interesting limiting forms of the axisym-
metric form of K-H equation. When we consider only the
zero-order terms of Taylor expansions in equation (26), we
can deduce one limiting form which is, in fact, an axisym-
metric form of the energy balance equation. Furthermore,
when we focus on the second-order terms of Taylor expan-
sions, equation (26) seems to be reduced to the axisym-
metric form of the vorticity balance equation.

It is straightforward to derive the limiting form of the
axisymmetric form of Karman-Howarth equation (26) us-
ing the previous expansions of the second and third-order
correlation functions as far as the second power of r (i.e.
of ρ and z)

∂

∂t

3∑
i=1

B0i = 2ν

[
2

3∑
i=1

bi + 4
3∑
i=1

ai

]
(46)

or

∂

∂t
〈u2
i 〉 = 2ν(〈ui

∂2ui
∂z2
〉+ 2〈ui

∂2ui
∂ρ2
〉). (47)

Note that the axisymmetric form of the viscous dissipa-
tion, εaxi is

εaxi = −ν
[(

∂2

∂z2
+

∂2

∂ρ2
+

1
ρ

∂

∂ρ

)
Bii(r)

]
r=0

(48)

where Bii = B1 + B2 + B3. By using Taylor expansions
for B1, B2 and B3 (up to the second-order powers of r)
into equation (48), we find

εaxi = −4ν
3∑
i=1

ai − 2ν
3∑
i=1

bi (49)
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and for i = 1, 2, 3

ai =
1
2!

(
∂2Bi
∂ρ2

)
r=0

bi =
1
2!

(
∂2Bi
∂z2

)
r=0

·

Therefore, the limiting form (46) is simply written

∂

∂t

3∑
i=1

B0i = −2εaxi. (50)

When ρ = 0, it reduces to

∂

∂t
(B01 + 2B02) = −2εaxi (51)

with

εaxi

ν
= −〈

(
∂u1

∂x1

)2

〉+ 2〈
(
∂u1

∂x2

)2

〉

+ 8〈
(
∂u2

∂x2

)2

〉+ 2〈
(
∂u2

∂x1

)2

〉 · (52)

This is the energy balance equation for axisymmetric tur-
bulence. It describes the rate of viscous decrease of the
mean kinetic energy of turbulence. In the case of isotropy,
equation (50) or equation (51) reduces to the well-known
isotropic energy balance equation which was first derived
by Taylor (1935, see M-Y [2]). Indeed, for isotropic turbu-
lence, we have

〈u2
1〉 = 〈u2

2〉 = 〈u2
3〉 (53)

and with the help of relations (35) and (37), we deduce
the well-known isotropic result

d
dt

(
3
2
〈u2

1〉) = −15ν
〈u2

1〉
λ2

t

· (54)

One can readily show that equation (54) can be written in
term of the isotropic viscous dissipation (εiso = 15ν〈u2

1,1〉)

d
dt
〈u2

1〉 = −2εiso (55)

which is similar to the axisymmetric result equations (50)
or (51).

5.4 The second-order terms of Taylor expansions

Now, let us consider the Taylor expansions given in equa-
tions (32), (39) and (41) as far as the fourth power of r
(i.e. ρ4, z4 and z2ρ2). Substituting them in the axisym-

metric form of K-H equation (26), we obtain

∂

∂t

(
ρ2

3∑
i=1

ai + z2
3∑
i=1

bi

)
=

νρ2

(
32

3∑
i=1

ci + 4
3∑
i=1

ei

)
+ νz2

(
8

3∑
i=1

ei + 24
3∑
i=1

di

)

+ ρ2

 ∑
i=1,8,9

(βi − β∗i ) + 4
∑

i=5,7,10

(γi − γ∗i )


+ z2

3
∑

i=1,8,9

(αi − α∗i ) + 2
∑

i=5,7,10

(ζi − ζ∗i )

 .

(56)

This must be the axisymmetric form of the vorticity bal-
ance equation because it reduces to the well-known vortic-
ity balance equation in the case of isotropic turbulence. In-
deed, substituting relations (37), (43) and (45) into equa-
tion (56), we obtain

∂

∂t

{(
−5

2
u2

λ2
t

)
(ρ2 + z2)

}
=

2ν{35
6
αu2(ρ2 + z2)}+ 35τu2(ρ2 + z2) (57)

or

1
2
∂

∂t
B

(2)
LL (0) =

7
3
νB

(4)
LL (0) +

7
6
B

(3)
LL,L(0) (58)

where

B
(2)
LL (0) = −u

2

λ2
t

, B
(3)
LL,L(0) = 6τu3,

B
(4)
LL (0) = αu2 (59)

where B(n)(0) denotes the nth-order derivative with re-
spect to r, for the value r = 0. Equation (58) is inter-
preted as the equation for the rate of change of the mean
square vorticity 〈ω2〉, i.e. the vorticity balance equation
(see M-Y [2]).
One of the primary objectives of this paper is to examine
the statistics and the dynamics of fields which are ho-
mogeneous, but not isotropic or local isotropic. Further-
more, there is a considerable evidence that local isotropy
is not an adequate description of the velocity derivatives
moments for at least the finite Reynolds numbers associ-
ated with many turbulent laboratory flows (George and
Hussein [14]). There are also few real turbulent flows in
which the turbulence can be assumed to be isotropic. Only
the statistical properties of the smallest scales of motion,
in high-Reynolds-numbers flows, would be expected to sat-
isfy isotropy. This strengthens considerably the suspicion
that local isotropy is not a strong requirement for a correct
description of many turbulent flows. In this context, ex-
perimental and numerical data for the results established
in this paper obtained over a range of Reynolds numbers
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will be essential to resolve the questions raised above, in
particular about why and whether or not local axisym-
metry will persist as the Reynolds number is increased. A
range of possibly different flows would be also desirable to
show that the axisymmetric equations should have more
general validity than their isotropic counterparts.

6 Conclusions

This new analysis offers some tools to investigators inter-
ested in the fundamental questions of turbulence. Kine-
matics and dynamics of homogeneous axisymmetric tur-
bulence have been derived with the assumption that the
properties of the turbulence are invariant with respect to
rotation about a preferred direction λ. In particular, equa-
tion (26) which relates the third-order velocity correlation
function to the second-order velocity correlation function.
When axisymmetry turns into isotropy, equation (26) re-
duces to Karman-Howarth equation. When r → 0, the
limiting form of axisymmetric Karman-Howart equation
leads to two limiting forms: the axisymmetric form of the
energy balance equation and the axisymmetric form of the
vorticity balance equation.

It is interesting to test experimentally as well as nu-
mericaly these new axisymmetric results, show their valid-
ity and determine whether or not the constrains of locally
axisymmetic turbulence are satisfied. The development of

such a theory of axisymmetric turbulence may also be use-
ful in establishing the circumstances under which isotropy
may be expected to prevail. A study of different flows with
various Reynolds numbers may be provide a basis for dis-
cussing “why and whether or not local axisymmetry will
persist as the turbulence Reynolds number is increased”.

References

1. G.K. Batchelor, The Theory of Homogeneous Turbulence
(Cambridge University Press, 1953).

2. A.S. Monin, A. M. Yaglom, Statistical Fluid Mechanics II
(Cambridge, Mass., MIT Press, 1975).

3. R.N. Henriksen, M. Lachieze-Rey, Notices R. Astrono. Soc.
245, 255 (1990).

4. B.R. Saha. J. Math. Phys. Sci. 27, 63 (1993).
5. O.G. Chkhetiani, JETP Lett. 63, 808 (1996).
6. T. Gotoh, Phys. Rev. E 57, 2984 (1998).
7. H. Politano, A. Pouquet, Phys. Rev. E 57, R21 (1998).
8. G.K. Batchelor, Proc. R. Soc. Lond. A 186, 480 (1946).
9. H.P. Robertson, Proc. Camb. Philos. Soc. 36, 209 (1940).

10. S. Chandrasekhar, Phys. Trans. R. Soc. Lond. A 242,
557(1950).

11. E. Lindborg, J. Fluid Mech. 302, 179 (1995).
12. J.O. Hinze, Turbulence (Mc Graw Hill, 1975).
13. U. Frisch, Turbulence (Cambridge University Press, 1995).
14. W.K. George, H.J. Hussein, J. Fluid Mech. 233, 1 (1991).


